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The hydrodynamic stability of flow in a free-convection boundary layer on a 
permeable plate is numerically investigated, The effect of the plate noniso- 
thermicity and the injection blowing intensity on the critical parameters is 
determined. 

The transition of laminar into turbulent flow in free convection on a vertical permeable 
isothermic surface was investigated experimentally in [I]. It was found that injection blow- 
ing destabilizes the flow, i.e., it reduces the flow stability with respect to external dis- 
turbances and the extent of the laminar boundary layer. We shall investigate the stability 
with respect to small disturbances in free-convection flow on impermeable and permeable 
vertical plates for different longitudinal gradients of the surface temperature. 

!. Consider a self-similar boundary layer on a nonisothermic vertical permeable plate 
for power-law variations of the temperature drop AT = T w -- T e ~ x n and the injection velocity 
v '~ x (n-1)/~. In this case, the equations of motion and energy are transformed into ordinary 
differential equations: 

f ' " + ( n + 3 ) f f " - - 2 ( n +  1) / '~ -k  0 ---- O, 

0" - -  Pr  [4nf'O - -  (n -~- 3) fO'] = 0 
(i) 

with the boundary conditions 

~ = 0  f = - - A ,  f ' = 0 ,  0 =  I; ~ = ~  f ' = 0 ,  0 = 0 .  (2) 

The stability of a free-convection boundary layer relative to small disturbances, with 
an allowance for the flow nonparallelism [2], is described by the following equations in 
terms of self-similar variables: 

@ v  2r162 + r D = iczG ( f '  - -  C)(q)" - -  cdrp) -1- (3 )  

+ ((3n + I) f" + (n - -  1) nf '")  (p' - -  ((n + 3) f + (n - -  1) nf ' ) (~'" - -  ~  ') - -  io~Gf'"q~ - -  ~', 

1 (4) 
(~,, _ ~2~)  = iotG (f '  - -  C) ~ q-  (4n0 q- (n - -  1) ~10') ~ '  --iczGq~O' - -  ((n 4-  3) f -[- (n - -  1) nf ' )  {~, 

Pr  

1 / 2 t x ,  and  x / ( G r x / 4 )  ~ / "  w h e r e  t h e  v a l u e s  o f  4 ' ,~ (Grx /4 )  , , , �9 a r e  u s e d  a s  t h e  v e l o c i t y  an d  t h e  l e n g t h  
scales, respectively. 

The velocity and temperature fluctuations are assumed to be nonexistent at the wall, and 
exponential damping of disturbances is assumed at infinity. The boundary conditions for Eqs. 
(3) and (4) then have the form 

~ 1 = 0  cp = ~p' = ~ = 0, 

~ 1 = ~ 1 7 6  ~ " - - ~ = 0 ,  ~ ' + a q : ~ = 0 ,  # ' ~ - ~ = 0 .  (5 )  
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The eigenvalue problem (3)-(5) with an allowance for (i) and (2) for neutral disturbances 
C i = 0 was solved by means of the method of differential trial runs presented in [3]. The 
calculations were performed for air flow, Pr = 0.73, with and without consideration of the 
effect of temperature fluctuations on velocity fluctuations that is accounted for by the last 
term in Eq. (3). 

2. Consider free-convection flow on an isothermic permeable plate (n = 0). In this case, 
the solution of Eq. (i) with the boundary conditions (2) for the 0~A~I range of injection 
parameter values has been obtained by several authors, for instance in [4, 5]. It is evident 
from Fig. la, which shows the velocity and temperature profiles, that, as A becomes larger, 
the boundary layer thickness increases, and the fullness of the velocity profile decreases, 
while the temperature distribution tends to assume a bar form. 

Figure 2 shows the neutral curves for different values of the parameter A, In the absence 
of injection, the obtained neutral curves show good correlation with data from [6]. However, 
there is no complete agreement between the results because the data from [6], in contrast to 
the data from our analysis, have been obtained by means of an equation not accounting for the 
transverse velocity component. It is evident from the figure that the neutral curve calculated 
on the basis of the complete system of equations (3) and (4) has two minimums for the zero or 
small injection parameter values. One of them, which characterizes the global flow stability, 
is determined by the interaction between thermal and hydrodynamic disturbances and lies in the 
longwave range of the wave number spectrum (small a values). As the injection intensity in- 
creases, the flow stability diminishes, i.e., the Grashof critical number (which is the analog 
of the critical Reynolds number for forced convection) decreases, which is in qualittative 
agreement with the experimental data from [i], obtained in determining the critical Grashof 
number for the start of transition, which is defined with respect to the development of ir- 
regular disturbances. The destabilizing effect of injection blowing on the flow is mainly con- 
nected with the distortion of the axial velocity distribution of undisturbed flow, which 
consists in the fact that the boundary layer thickness increases, while the velocity profile 
becomes less full. 

For A = 0.34, both minimums of the neutral curve assume equal values, which leads to 
discontinuities in the relationships Ucr(A), Crcr(A) and a break in Gcr(A) (Fig. 3a). If the 
injection parameter increases still further, the short-wave disturbances (large a values) 
become the most unstable ones, while the neutral curves have a single minimum, similar to 
those calculated without an allowance for temperature fluctuations. Figures 2 and 3a indicate 
that, under these conditions, the solid and dashed curves converge, i.e., the effect of tem- 
perature fluctuations on flow stability diminishes. In the case of intensive injection, as 
was shown in [7], the entire flow region in the boundary layer can be divided into two zones: 
the inner (wall) zone, where the flow is calculated in the nonviscous approximation, and the 
outer zone (mixing layer), where the velocity and temperature distributions of the inner 
zone join those of the region remote from the plate, In Fig. la, the dash--dot curves represent 
the velocity and temperature profiles for the injection parameter A = 2, which are calculated 
by solving the motion and energy equations without considering the viscosity and thermal 
conductivity: 

~/A~ dz 4~ 
~ / A =  V 2  ~ - 4n , O=lf/A[~+3" (6)  ~ f  i 

-1J VIZ] n'~ (1 --Izl~§ 3 ) 

It is evident from the diagram that the velocity and temperature distributions (6) are in 
satisfactory agreement with the complete solutions of the system of equations (i) in the 
wall region. In the inner zone, regardless of the fact that it does not contain an inflec- 
tion point, the stability loss mechanism is nonviscous in character, i.e,, the stability 
parameters can be determined by solving the problem of nonviscous instability of forced flow 
for intensive injection with a negative pressure gradient B = 2/3, while they indicate an 
increase in the critical Grashof number [8]. However, in calculations based on Eqs. (3) and 
(4), the critical number Gcr is constant in the case of intensive injection (Fig. 3a), which 
is explained by the development of velocity perturbations of greater instability in the outer 
region, which has finite dimensions for n = O, while the mathematical description of the 
laminar flow is given by 
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Fig. i. Velocity (solid curves) and temperature (dashed 
curves) distributions in the boundary layer for a) n = 0 
and b) n = i. I) A = 0; 2) i; 3) 1.5; 4) 2. 
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Fig. 2. Neutral stability curves, 
calculated with (solid curves) and 
without (dashed curves) an allowance 
for temperature fluctuations. I) 
A = 0; 2) 0.2; 3) 0.4; 4) 1.0. 

f,,, + 3 i , , : - -  2:'~ + 0  = o, 

0" + 3PrfO' = O, 

f ' =O ,  0 = 0 ,  

(7) 

3V:2 B(I/2, 3/4) is the position of the separating streamline. where n: = n -- no, and ~0-- 4 

Moreover, in the case of intensive injection, the outer critical point, where, as was 
shown in [9], the transition occurs, as well as the inflection points of the velocity and the 
temperature profiles, are located in the mixing layer, which actually determines the flow 

stability as a whole. In the case of intensive injection, as in forced convection [8], the 
value of act diminishes with an increase in A'(Fig, 3a), i.e., long-wave disturbances pre- 
dominate among the disturbances developing in the flow. 

It should be mentioned that, on the basis of the local similarity principle, we reach 
the conclusion that the above results can be used to analyze the effect on stability of not 
only self-similar, but also uniform, injection (as well as injection obeying some other law 

�9 ~ - - 1  / ~  - �9 not greatly different from the self-similar injection law v x ); in thls case, the 
results must be compared for the same value of the injection parameter vxCrxl/~/~. The above 
assumption is also supported by the fact that the flow in the outer zone of the boundary 
layer, which determines the loss of stability in the case of intensive injection, is described 
by problem (7) for both self-similar and uniform injection [i0]. 

3. Consider nonisothermic flow on a vertical plate (n > 0). The velocity and temperature 
profiles for different values of n were investigated in [ii]. It was found that the fullness 
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Effect of injection on the critical stability param- 

eters for a) n = 0 and b) n = i. 
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Fig. 4. Effect of nonisothermicity 
of the plate on the stability char- 
acteristics. 

of the velocity profile increases, so that friction at the wail increases. Such behavior 
of the velocity profile enhances the flow stability, which can be seen in Fig, 4, where the 
dependences of the critical parameters on n are given, It is evident that ~cr is virtually 
constant, while Crc ~ diminishes with an increase in n, which corresponds to the behavior 
of the velocity maxzmum for undisturbed flow. We should also mention the virtually linear 
relationship Gcr(n), which holds for calculations with or without an allowance for tempera- 
ture fluctuations. 

In order to determine the effect of transverse flow of matter on the flow stability 
near a nonisothermic surface, we shall consider the case n = i, which corresponds to linear 
temperature variation along the plate. The velocity and temperature distributions determined 
by solving system (i) for n = i are shown in Fig. lb. As the injection intensity rises, the 
boundary layer thickness increases, while the velocity profile approaches the sinusoidal form 
(dash-dot curves) obtained from (6) for n = 1 and A = 2,0. 

The neutral curves calculated for this case have the same shape as for n = 0. Figure 
3b shows the critical stability characteristics as functions of the injection parameter. As 
the intensity of the transverse mass flow increases, the Grashof number decreases, while the 
instability of the free-convection boundary layer is determined by the rise of long-wave 
disturbances for low injection values, as in the case of n = 0. For A > 0.34 (as for n = 0), 
short-wave disturbances are the most unstable ones. It is seen in Fig. 3b that, for inten- 
sive injection, the solid and the dashed curves draw nearer to each other, i,e., the effect 
of temperature fluctuations on the stability characteristics diminishes. On the whole, the 
effect of injection on the stability of a free-convection boundary layer has the same char- 
acter for both isothermic and nonisothermic plates. 

NOTATION 

x, y, Cartesian coordinates; T, temperature; v, injection velocity; ~, kinematic viscosity 
coefficient; 0, density; ~p, thermal expansion coefficient; a, thermal diffusivity coefficient; 
g, acceleration due to gravity; Gr x = gBp(T w -- Te)x~/~ 2, Grashof number; Pr = v/a, Prandtl 
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number; ~ = y(Grx/4)-~/~/x, self-similar coordinate; f, self-similar stream function; ~ = 
(T -- Te)/(T w -- Te), dimensionless temperature; A = vx(Grx/4)-I/~/(n + 3)~, injection param- 
eter; % and 8, amplitudes of the velocity and temperature disturbances, respectively; a and 
C = Cr + iCi, wave number and the phase velocity of disturbance propagation, respectively; 
G 4(Grx/4) :/~. Subscripts: e, external medium; w, wall; cr, critical. 
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